Identifiability:

Assumptions: data $Y,A$, and a set of treatment covariates $X$

Capture d’écran 2025-03-19 à 19.39.44.png

Stratification

If we want marginal causal effect, we can average over $X$. This gets rid of the X.

$$ E(Y^a)=\sum_x E(Y|A=a,X=x)P(X=x) $$

Example: diabetes treatments. saxagliptin v. sitagliptin.

Capture d’écran 2025-03-19 à 19.51.16.png

Capture d’écran 2025-03-19 à 19.53.35.png

Capture d’écran 2025-03-19 à 19.56.18.png

Marinalize:

Capture d’écran 2025-03-19 à 20.01.05.png

In practice, however, there will be many $X$ needed to achieve ignorability.

Incident user and active comparator designs

Cross-sectional look at treatments:

Capture d’écran 2025-03-19 à 20.26.19.png